Shiga Toxin Type 2dact Displays Increased Binding to Globotriaosylceramide in vitro and Increased Lethality in Mice after Activation by Elastase
نویسندگان
چکیده
Shiga toxin type 2dact (Stx2dact), an Stx2 variant originally identified from Escherichia coli O91:H21 strain B2F1, displays increased cytotoxicity after activation by elastase present in intestinal mucus. Activation is a result of cleavage of two amino acids from the C-terminal tail of the A2 subunit. In this study, we hypothesized that activation leads to increased binding of toxin to its receptor on host cells both in vitro and in vivo. To test this theory, Stx2dact was treated with elastase or buffer alone and then each toxin was assessed for binding to purified globotriaosylceramide (Gb3) in an enzyme-linked immunosorbent assay, or cells in culture by immunofluorescence, or flow cytometry. Elastase- and buffer-treated Stx2dact were also evaluated for binding to mouse kidney tissue and for relative lethality in mice. We found that activated Stx2dact had a greater capacity to bind purified Gb3, cells in culture, and mouse kidney tissue and was more toxic for mice than was non-activated Stx2dact. Thus, one possible mechanism for the augmented cytotoxicity of Stx2dact after activation is its increased capacity to bind target cells, which, in turn, may cause greater lethality of elastase-treated toxin for mice and enhanced virulence for humans of E. coli strains that express Stx2dact.
منابع مشابه
Identification and characterization of Shiga toxin type 2 variants in Escherichia coli isolates from animals, food, and humans.
There is considerable heterogeneity among the Shiga toxin type 2 (Stx2) toxins elaborated by Shiga toxin-producing Escherichia coli (STEC). One such Stx2 variant, the Stx2d mucus-activatable toxin (Stx2dact), is rendered more toxic by the action of elastase present in intestinal mucus, which cleaves the last two amino acids of the A2 portion of the toxin A subunit. We screened 153 STEC isolates...
متن کاملShiga Toxin Binds Human Platelets via Globotriaosylceramide (P Antigen) and a Novel Platelet Glycosphingolipid
Hemolytic-uremic syndrome is a clinical syndrome characterized by acute renal failure, microangiopathic hemolytic anemia, and thrombocytopenia that often follows infection by Shiga toxinor verotoxin-producing strains of Escherichia coli. Because thrombocytopenia and platelet activation are hallmark features of hemolytic-uremic syndrome, we examined the ability of Shiga toxin to bind platelets b...
متن کاملShiga toxin binds human platelets via globotriaosylceramide (Pk antigen) and a novel platelet glycosphingolipid.
Hemolytic-uremic syndrome is a clinical syndrome characterized by acute renal failure, microangiopathic hemolytic anemia, and thrombocytopenia that often follows infection by Shiga toxin- or verotoxin-producing strains of Escherichia coli. Because thrombocytopenia and platelet activation are hallmark features of hemolytic-uremic syndrome, we examined the ability of Shiga toxin to bind platelets...
متن کاملComparisons of Native Shiga Toxins (Stxs) Type 1 and 2 with Chimeric Toxins Indicate that the Source of the Binding Subunit Dictates Degree of Toxicity
Shiga toxin (Stx)-producing E. coli (STEC) cause food-borne outbreaks of hemorrhagic colitis. The main virulence factor expressed by STEC, Stx, is an AB5 toxin that has two antigenically distinct forms, Stx1a and Stx2a. Although Stx1a and Stx2a bind to the same receptor, globotriaosylceramide (Gb3), Stx2a is more potent than Stx1a in mice, whereas Stx1a is more cytotoxic than Stx2a in cell cult...
متن کاملMolecular basis for up-regulation by inflammatory cytokines of Shiga toxin 1 cytotoxicity and globotriaosylceramide expression.
Mortality in postdiarrheal hemolytic-uremic syndrome (HUS) is associated with brain injury. Normally, brain cells are resistant to Shiga toxin (Stx), the putative pathogenic toxin in HUS. However, exposure of human brain endothelial cells (HBECs) to tumor necrosis factor (TNF) and/or interleukin (IL)-1 markedly up-regulates Stx receptor (globotriaosylceramide; Gb3) expression and cytotoxicity. ...
متن کامل